Quantum Monte Carlo, keeping up with the HPC Evolution

Jeongnim Kim^{1,2}, Kenneth P Esler¹ and David M Ceperley^{1,2,3}

National Center for Supercomputing Applications
 Materials Computation Center
 Department of Physics
 University of Illinois at Urbana-Champaign

Acknowledgements

QMCPACK developers*

- Kenneth P. Esler (Stoneridge)
- Jeremy McMinis (UI)
- Miguel Morales (LLNL)
- Bryan Clark (Princeton)
- Luke Shulenburger (Sandia)
- Simone Chiesa (W&M)
- Kris Delaney (UCSB)
- Jaron Krogel (UI)

and more

QMC Endstation

- David M Ceperley (UI)
- S. Zhang & H. Krakauer (W&M)
- P. Kent (ORNL)
- L. Mitas (NCSU)
- Umrigar & Hennig (Corrnell)
- A. Srinivasan (FSU)

Special thanks to

- T. C. Schulthess (ORNL, CSCS)
- Richard M. Martin (UI)
- John W. Wilkins (OSU)

^{*}http://qmcpack.cmscc.org

Outline

- Quantum Monte Carlo Methods: accurate, robust and efficient solution for electronic structure calculations, especially for correlated systems
- QMC on clusters of multi-core and GPUs
 - OpenMP/MPI hybrid
 - CUDA/MPI hybrid
- Prospect of QMC algorithms on hybrid architectures
- Conclusions

Quest for Accurate Quantum Simulations: harnessing computing power

- Hard-core bosons on a CDC 6600 (1974)
- Electronic and structure properties of carbon/silicon clusters on HP 9000/715 cluster and Cray Y-MP (1995)
- Coupled Electron-Ion Monte Carlo simulations of dense hydrogen on Linux Clusters (2000)
- Diffusion Monte Carlo simulations of liquid water on multicore SMP clusters (2009)

QMC advantages: accuracy and scalability

- Applicable to a wide range of problems
 - Any boundary conditions: molecular and solid-state systems
 - Dimensionality: 1D, 2D, and 3D
 - Representation: atomistic to model Hamiltonians
- Scale with a few powers in system size: $O(N^3)-O(N^4)$
 - Routine calculations of 100s-1000s electrons
- Ample opportunities of parallelism

QMC has enabled accurate predictions of correlated electronic systems: plasmas to molecules to solids; insulators to highly correlated metals

- Fundamental High-Pressure Calibration from All-Electron
 Quantum Monte Carlo Calculations, Esler et al, PRL (2010)
- Evidence for a first-order liquid-to-liquid transition in highpressure hydrogen, Morales et al, PNAS (2010)

QMCPACK: QMC for HPC

- Implements essential QMC algorithms and best practices developed over 20yrs+
- Designed for large-scale QMC simulations of molecules, solids and nanostructures on massively parallel machine
 - (OpenMP,CUDA)/MPI Hybrid parallelization
 - Object-oriented and generic programming in C++
- Apply software engineering
 - Reusable and extensible solution for new development
 - Standard open-source libraries and utilities for development, compilation and execution
 - Portable and scalable I/O with XML/HDF5 http://qmcpack.cmscc.org

More recent QMC development*

- Efficient and scalable QMC algorithms
- Fast algorithm for multi-determinant evaluation
- Improved energy minimization in VMC and DMC

Energy of H₂O

Formation energy of a native defect in Si

$$E_f$$
= 3.07 (11) eV

* By QMCPACK developers

QMC in Action

QMC keeping up with HPC evolution

- Increasing accuracy, computational complexity and problem size of QMC simulations with HPC evolution
 - Model Hamiltonian in 70s, e.g., hard-sphere and LJ potential
 - Homogeneous electron gas in 80s, seminal work by Ceperley and Alder laid the foundation of DFT
 - Atoms, molecules and bulk
 - Recently, routine QMC simulations of 1000s of electrons including disordered solids
- Shorter time-to-solution = More Science
- Can QMC continue?

High-performance computing in 2010s

- Petaflop machines have been around, e.g. Jaguar (OLCF)
- Sustainable petaflop machines are coming, e.g., Blue Waters at NCSA in 2011

Clusters of Shared-memory Processors (SMP)

- Hierarchical memory and communication
- Fast interconnects & various inter-node topology
- Increasing number of cores per SMP node
 - 8-32 cores are common; more is expected.
- Fixed memory per core but more aggregated memory per node
- SIMD units: SSE on x86 and VSX on IBM Power 7(P7)
- Large number of threads: simultaneous multi-threading (a.k.a. hyperthreading), e.g., 128 threads on IBM P7 32-core node

Basics of QMC

For N-electron system

$$\{\mathbf{R}\}=(\mathbf{r}_1,\cdots,\mathbf{r}_N)$$

Many-body Hamiltonian

$$\hat{H} = \sum_{i} \frac{1}{2m_e} \nabla^2 + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} + \sum_{i} V_{ext}(\mathbf{r}_i)$$

Find the solution $\hat{H}|\Psi>=E_0|\Psi>$ & $\langle\Psi|\hat{H}|\Psi\rangle=E_0$

Many-body *trial* wavefunction $\Psi_T(\mathbf{R})$

$$E_T = \frac{\int d^{3N} \mathbf{R} \ \Psi_T^*(\mathbf{R}) \hat{H} \Psi_T(\mathbf{R})}{\int d^{3N} \mathbf{R} \ |\Psi_T(\mathbf{R})|^2}, \quad E_T \ge E_0$$

QMC

$$\langle E_T \rangle = \frac{\sum_i^M w(\mathbf{R}_i) E_L(\mathbf{R}_i)}{\sum_i^M w(\mathbf{R}_i)}, \quad E_L = \frac{\hat{H}\Psi_T(\mathbf{R})}{\Psi_T(\mathbf{R})}$$

Essentials of QMC

Note that

$$E_T = \langle E_T \rangle |_{M \to \infty}, \quad E_0 \leftarrow E_T |_{\Psi_T \to \Psi}$$

QMC methods employ

- $\Psi_T(\mathbf{R})$, compact, fast to compute, and accurate
- Efficient stochastic sampling to generate large M
- Variational Monte Carlo (VMC) Variational parameters $E_{VMC} = \min_{\alpha} \langle \Psi_T(\mathbf{R}; \alpha) | \hat{H} | \Psi_T(\mathbf{R}; \alpha) \rangle$ $|\Psi_T|^2$
- Diffusion Monte Carlo (DMC)

$$E_{DMC} = \langle \Phi_0 | \hat{H} | \Psi_T \rangle, \quad \Phi_0 = \lim_{\beta \to \infty} \exp^{-\beta \hat{H}} \Psi_T \qquad \Phi_0 \Psi_T$$

Efficiency of QMC

QMC employs sampling to obtain

$$< E_T> = \frac{\sum_i^M w(\mathbf{R}_i) E_L(\mathbf{R}_i)}{\sum_i^M w(\mathbf{R}_i)}, \quad E_L = \frac{\hat{H} \Psi_T(\mathbf{R})}{\Psi_T(\mathbf{R})}$$
 with an error bar $\delta = \frac{\sigma}{\sqrt{M}}, \quad \sigma^2 = < E_T^2> - < E_T>^2$

variance

- Minimize wall-clock time to reach a target error bar
- Efficiency of QMC simulations is high, when
 - Variance is small: $\sigma \to 0 \; \text{as} \; \Psi_T \to \Psi \;\;\;\;$ (zero-variance) Physical insights & improved optimization
 - The rate of MC sample generation is high Parallelism, compact form of Ψ_T & optimized kernels

HowTo for QMC Calculations

- Initial guess Ψ^0_T
 - Compact, easy to evaluate, but close to true Ψ

$$\Psi_T(\mathbf{R}) = J(\lbrace lpha \rbrace) \sum C_i D_i^{\uparrow}(\phi) D_i^{\downarrow}(\phi)$$

- Single-particle orbitals $\{\phi\}$ e.g., KS or HF solution
- Find $\{\alpha\}$ & $\{C\}$ to optimize an object function: energy and variation minimization
- Projecting out the ground-state by applying a propagator $e^{-\tau \hat{H}}$

Diffusion Monte Carlo

```
for generation = 1 \cdots N_{MC} do
   for walker = 1 \cdots N_w do
       let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
                                                                        Drift & Diffusion
      for particle i = 1 \cdots N do
          set \mathbf{r}_{i}' = \mathbf{r}_{i} + \delta
          let \mathbf{R}' = {\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N}
          ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
          if r \rightarrow r' is accepted then
              update state of a walker
          end if
       end for{particle}
       Compute E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
       Reweight and branch walkers
                                                                                Branch
       Update E_T
   end for{walker}
end for{generation}
```


Characteristics of QMC

```
DMC pseudo code
for generation = 1 \cdots N_{MC} do
   for walker = 1 \cdots N_w do
       let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
       for particle i = 1 \cdots N do
          set \mathbf{r}_{i}^{'} = \mathbf{r}_{i} + \delta
          let \mathbf{R}' = {\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N}
          ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
          if \mathbf{r} \to \mathbf{r}' is accepted then
              update state of a walker
          end if
       end for{particle}
       Compute E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
       Reweight and branch walkers
       Update E_T
   end for{walker}
end for{generation}
```

- Ample opportunity for parallelism
 - Configurations
 - K-point
 - Walker parallelization

Characteristics of QMC

DMC pseudo code for generation = $1 \cdots N_{MC}$ do for walker = $1 \cdots N_w$ do let $\mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}$ for particle $i = 1 \cdots N$ do set $\mathbf{r}_{i}^{'} = \mathbf{r}_{i} + \delta$ let $\mathbf{R}' = {\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N}$ ratio $ho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})$ if $\mathbf{r} \to \mathbf{r}'$ is accepted then update state of a walker end if end for{particle} Compute $E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})$ Reweight and branch walkers Update E_T end for{walker} end for{generation}

- Ample opportunity for parallelism
 - Configurations
 - K-point
 - Walker parallelization
- Freedom in Ψ_T
 - Compute vs Memory
- Computationally demanding
 - Ratio, update & Local energy
 - Random access

Characteristics of QMC

```
DMC pseudo code
for generation = 1 \cdots N_{MC} do
   for walker = 1 \cdots N_w do
       let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
       for particle i = 1 \cdots N do
          set \mathbf{r}_{i}' = \mathbf{r}_{i} + \delta
          let \mathbf{R}' = {\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N}
          ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
          if r \rightarrow r' is accepted then
              update state of a walker
          end if
       end for{particle}
       Compute E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
       Reweight and branch walkers
       Update E_T
   end for{walker}
end for{generation}
```

- Ample opportunity for parallelism
 - Configurations
 - K-point
 - Walker parallelization
- Freedom in Ψ_T
 - Compute vs Memory
- Computationally demanding
 - Ratio, update & Local energy
 - Random access

- Communication light but need to
 - Global sum
 - Load balance

Hierarchical Parallelization of QMC

For a given N-electron system

- 1 Multiple instances of correlated configurations: any
- 2 Multiple k-points : 1-100 Critical to remove finite-size effects
- 3 Walker parallelization:

$$N_w=10^4-10^6$$
 Multi-core

Hierarchical Parallelization of QMC

For a given N-electron system

- Multiple instances of correlated configurations: any
- 2 Multiple k-points : 1-100
 Critical to remove finite-size effects
- 3 Walker parallelization:

$$N_w = 10^4 - 10^6$$

4 N-particle: $N-N^3$

GPU

And, more parallelism can exposed

$$\Psi_T(\mathbf{R}) = \Pi_i \Psi_i, \hat{H} = \sum_i \hat{h}_i$$

Hybrid scheme on SMP

- Maximize performance and reduce the time-to-solution
 - MPI task per SMP, better per NUMA node
 - Multiple walkers per threads
 - Use all the hardware threads available

Performance of Hybird QMC

- DMC scaling is almost perfect, > 90% efficiency
 - Limited by collectives for $E_T, N_p^w < N^w >$
- Open/MPI hybrid helps more than memory footprint
 - Collectives scale O(P²) or O(P In P) for P tasks
 - Large average number of walkers per MPI task, thus small fluctuations: easy to balance walkers per node

QMC on Clusters of SMPs

- Compute-heavy and communication-light nature makes QMC an easier parallel problem than other problems
- But, as the parallelism increases > 10⁴, many issues arise
 - Limited memory per core
 - MPI performance : collectives
 - I/O: initialization and checkpoint
- MPI/OpenMP provides QMC with simple but effective solutions
 - Standards of both commercial and HPC : rely on steady improvement of the HP infrastructure, compilers and libraries
 - Can exploit hierarchy of memory and communication
 - Large-shared memory per node : minimize data replications,
 while taking advantage of increasing hardware threads

QMC on GPU

- Why GPU?
- Many threads, high floating-point performance, and bandwidth
- Tera- and peta-scale workstations
- A candidate for the future HPC architecture
- GPU port of QMCPACK*
- Restructure the algorithm and data structure to exploit parallelism
- MPI for load balancing & reductions : high parallel efficiency

```
for walker = 1 \cdots N_w do
   let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
   for particle i = 1 \cdots N do
       set \mathbf{r}_{i}' = \mathbf{r}_{i} + \delta
       let \mathbf{R}' = \{\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N\}
       ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
       if r \rightarrow r' is accepted then
           update state of a walker
       end if
   end for{particle}
   Compute E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
   Reweight and branch walkers
   Update E_T
end for{walker}
```

^{*} Esler, Kim, Shulenburger&Ceperley, CISE (2010)

Loops

QMC on GPU

Impact of single precision

CPU: double

GPU: mixed, main kernels in single

Speedup: 1 GPU/ 4 cores

Performance data on NCSA Lincoln cluster

- nVidia G200 GPUs
- Intel Xeon (Harpertown)

Scaling on multiple GPUs

MC sample/gpu/sec

Target population

12288

- 3x3x1 Graphite
 - 36 Carbon atoms
 - 144 electrons
- On Keeneland at NICS, each node has
 - Dual Hex-core X5560
 - 3 NVIDIA Fermi

Performance update

MC samples/(GPU,core)/sec

- NVIDIA Fermi (Keeneland)
- Intel Westmere (Keeneland)
- AMD MagnyCours (Hopper)

MC samples/(GPU, Node)/sec

MC samples/sec = figure of merit for QMC

*4x4x1 graphite, 256 electrons

Computational challenges for QMC

QMC positioned to harness the increasing computing powers of current and next generation of HPC

- Sufficient parallelism over walkers on current HPC systems
 - Petaflop multi-core systems
 - Teraflop GPU systems
- A lot of new sciences on petaflop heterogeneous systems, including Titan

Reduce time per walker per DMC step: $O(N^2)$ - $O(N^3)$

- Fine-level parallelisms: light-weight threads, nested tasks
- Optimizations on multi-core chips: random-access of readonly data, private/shared cache reuse on NUMA systems
- Utilizing all the power of heterogeneous nodes

Room for improvement

```
for generation = 1 \cdots N_{MC} do
                                                                    \Psi_T(\mathbf{R}) = \Pi_k \Psi_k
   for walker = 1 \cdots N_w do
      let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}
                                                                       \hat{H} = \sum_{k} \hat{h}_{k}
      for particle i = 1 \cdots N do
                                              node
         set \mathbf{r}_{i}' = \mathbf{r}_{i} + \delta
                                                             T Psi<T>::ratio(int i)
         let \mathbf{R}' = {\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N}
         ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})
                                                                T r(1.0);
                                                                for (int k=0; k<Z.size(); ++k)</pre>
         if r \rightarrow r' is accepted then
                                                                   r *= Z[k]->ratio(P,i);
            update state of a walker
                                                                return r;
         end if
      end for{particle}
      Compute E_L = H\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
                                                               Hamiltonian<T>::evaluate()
      Reweight and branch walkers
                                                               T eloc=0.0;
      Update E_T
                                                                for(int k=0; k<H.size(); ++k)</pre>
                                                                  eloc += H[k]->evaluate(P);
   end for{walker}
                                                                return eloc
end for{generation}
```


Core Computations

For each walker,

```
let \mathbf{R} = \{\mathbf{r}_1 \dots \mathbf{r}_N\}

for particle i = 1 \dots N do

set \mathbf{r}_i' = \mathbf{r}_i + \delta

let \mathbf{R}' = \{\mathbf{r}_1 \dots \mathbf{r}_i' \dots \mathbf{r}_N\}

ratio \rho = \Psi_T(\mathbf{R}')/\Psi_T(\mathbf{R})

if \mathbf{r} \to \mathbf{r}' is accepted then

update state of a walker

end if

end for{particle}

Compute E_L = \hat{H}\Psi_T(\mathbf{R})/\Psi_T(\mathbf{R})
```

All about Ψ_T

$$\delta = r + au
abla_i \ln \Psi_T$$
 Quantum force $rac{\Psi_T(\mathbf{r}_1 \cdots \mathbf{r}_i^{'} \cdots \mathbf{r}_N)}{\Psi_T(\mathbf{r}_1 \cdots \mathbf{r}_i \cdots \mathbf{r}_N)}$ $\Psi_T \leftarrow \Psi_T(\mathbf{r}_1 \cdots \mathbf{r}_i^{'} \cdots \mathbf{r}_N)$ $f(\{\mathbf{R}\}, \nabla \ln \Psi_T, \nabla^2 \ln \Psi_T)$

Use
$$\Psi_T = \Pi_i \Psi_i \implies \ln \Psi_T = \sum_i \ln \Psi_i$$

Slater-Jastrow for Electrons

$$\Psi_T(\mathbf{R}) = e^{J_1 + J_2 + \cdots} \sum C_i D_i^{\uparrow}(\phi) D_i^{\downarrow}(\phi) \qquad N = N^{\uparrow} + N^{\downarrow}$$

Correlation (Jastrow)

$$J_1 = \sum_i^N \sum_I^{ions} u_1(|\mathbf{r}_i - \mathbf{r}_I|)$$

$$J_2 = \sum_{i
eq j}^N u_2(|\mathbf{r}_i - \mathbf{r}_j|)$$

Anti-symmetric function (Pauli principle)

$$D_i^\uparrow = \det \begin{vmatrix} \phi_1(\mathbf{r}_1) & \cdots & \phi_1(\mathbf{r}_{N^\uparrow}) \\ \vdots & \vdots & \vdots \\ \phi_{N^\uparrow}(\mathbf{r}_1) & \cdots & \phi_{N^\uparrow}(\mathbf{r}_{N^\uparrow}) \end{vmatrix}$$
 Single-particle orbitals

- Computational complexity per MC step
 - Evaluation $\{\phi\}$
 - **Determinant evaluation**
 - **Jastrow evaluation**

$$\mathcal{O}(N^2N_{spo})$$

$$\mathcal{O}(N^3)$$

$$\mathcal{O}(N) - \mathcal{O}(N^3)$$

Single-particle orbitals

• Linear combinations of basis functions $N_{spo} \propto N_b Op(\Phi)$

$$\phi_i = \sum_k^{k=N_b} c_k^i \Phi_k$$

- Typically the solutions of simpler theories, i.e. $C's \& \{\Phi\}$ from Hartree-Fock or DFT calculations
- SPO can take various forms

SPO Type	N_b	$Op(\Phi)$	Memory Use
Molecular orbitals	$\mathcal{O}(N)$	Medium-High	Low
Plane waves	$\mathcal{O}(N)$	High	Medium
B-spline	Fixed	Low	High

Best solution for large-scale QMC on SMPs

Analysis on current CPU & GPU

Breakup of compute kernels

- QMCPACK achieves high efficiency by amortizing threads & memory
- As the system size and complexity grows, each kernel takes longer
- Can afford overhead for task-based parallelism
- But, difficult to balance the load among tasks: device and problem dependent

Strategy to further accelerate QMC

- Task-based parallelism with smart allocators on heterogeneous nodes
- Exploit generic programming
 - Specialization on devices: allocators, containers, algorithms
 - Hide low-level programming but optimize the kernels with the best option(s) available
 - Auto-tuning of SIMD kernels
- Stick to standards: C++, OpenMP, Pthreads and MPI
 - Heavy lifting by the compilers
 - Vendor optimized communication and numerical libraries
- Cope with the changes

Conclusions

- QMC has kept up with the HPC evolution and will continue improving predictive powers in physics, materials and chemistry
 - ✓ Clusters of multi- and many-core SMP
 - ✓ Clusters of GPU
 - Clusters of hybrid
 - What is next
- More to be done improve science productivity
 - Reduce impacts of application-level, software and hardware faults: Algorithms for robust and fault-tolerant simulations
 - Faster off-node communication and I/O

Acknowledgements

Supported by

- QMC Endstation (DOE, ASCR)
- PetaApps (NSF-DMR, OCI)
- Materials Computation Center, University of Illinois (NSF-DMR)
- Center for Defect Physics, ORNL (DOE-BES)
- National Center for Supercomputing Applications (NSF)

Computing resources provided by

- Oak Ridge Leadership Computing Facility (OLCF)
- NSF Teragrid facilities at NCSA, NICS, PSC and TACC
- National Energy Research Scientific Computing Center (NERSC)
- Argon Leadership Computing Facility (ALCF)

